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ABSTRACT We have developed a new Bayesian image reconstruc-
tion method that has been shown to be superior to the best inlplemen-

rations of other competing xnethods, including Goodness-of-Fit meth-
ods such as Least-Squares fitting and Lucy-Richardson reconstruction,
as well as Maximum Entropy (ME) methods such as those embodied in
the MEMSYS algorithIns. Our new method is based on the concept of

the pixon, the fundalnental, indivisible unit of picture information. Use
of the pixon concept provides an improved image model, resulting in an
image prior which is superior to that of standard ME. Our past work has
shown how uniforln inforlnation content pixons can be used to develop

a "Super-ME" inethod in which entropy is maximized exactly. Recently,
however, we have developed a superior pixon basis for the image, the
Fractal l)ixon Basis (FPB). Unfike the Unitorin I'ixon Basis (UPB)of
our "Super-ME" lnethod, the l,'l)B basis is selected by einploying fractal
diInensional concel)ts to assess the inherent structure in the linage. The
Fractal Pixon Basis results in the best image reconstructions to date, su-

perior to both U1)B and the best ME reconstructions. In this paper: we
review the theory of the UPB and I"PB l)ixon and apply our methodology
to the reconstruction of far-infrared imaging of the galaxy M51. The re-

suits of our reconstruction are COlnt)ared to published reconstructions of
the same data using the Lucy-Richardson algorithm, the Maximum Cor-
relation Method develot)ed at IPAC, and the MEMSYS ME algorittlms.
The results show that our reconstructed image has a spatiM resolution a
factor of two better than best previous methods (and a factor of 20 finer
than the width of the l)oint response function), and detects sources two

orders of tnagnitude fainter than other methods.

BAYESIAN IMAGE RECONSTRUCTION

Bayesian image reconstruction estimates the best image by statistically inodeling

the imaging process. To do this, one factors the joint probability distribution
of the triplet, D, I, and M, i.e., p(D,1,M), (where D, 1, and M are the data,
unblurred image, and model respectively) using Bayes' Theorem to derive an
expression for the most 1)robable or M.A.P. (MaxilnUln A Posteriori) image. In
deriving the expression for the M.A.P. image, Inost Bayesian methods assume
that all aspects of the lnodel, M, linking image and the data are to be held
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constant during tile image reconstruction process. More advanced methods,
such as Weir's multi-channel method (1991, 1993) and the method presented here

(also see Pifia and Puetter 1993 and Puetter and Pifia 1993), systematically vary
certain aspects of the model to improve tile quality of the image reconstruction.
Varying the image and the model simultaneously, places I and M on a more equal
footing and begins to blur the distinction between image and model. Indeed,
our Bayesian formulation of the image reconstruction problem treats them as

full equals; see Pifia and Puetter (1993) and Puetter and Pifia (1993). With this
in nfind, a Bayesian formulation of the image reconstruction problem which is
symmetric with respect to the inlage and model can be obtained by factoring
p(D, 1, M) in the following manner:

p(1), 1, M) = p(l)lI, M)p(1, M) = p(I, M ID)p(1))

which implies

(x)

p(I,MID ) = P(DII,M)p(1, M) p(DII, M)p(I[M)p(M) p(DII,M)p(IIM)
p(Z)) = p(z))

(2)
where in the _tandard notation p(XIY ) is the probability of X given that Y is
known, and the proportionality in equation (2) is obtained since D is constant
(hence p(D) is constant) and since we have no prior basis on which to dis-

criminate between models (i.e., p(M) = con_t). Equation (2)is an expression
for the M.A.I'. image/model pair, i.e., the image/model pair which maxinfizes
p(I,MID). Our method assumes that deriving the M.A.P. image/model pair
represents the optimal reconstruction.

The significance of the two terms in the prol)ortionafity in equation (2)

is readily understood. The tirst term, p(DI_,M), is a goodness-of-lit (GOF)
quantity, measuring the likelihood of the data given a particular image and
model. The second term, p(IIM), the "image prior", expresses the a priori
probability of a particular realization of the image; note that equivalently we

could use the image/model prior p(l, M). In G OF image reconstruction, p(IIM)
is effectively set equal to unity, i.e., there is no prior bias concerning the image.
A typical choice for p(DIl , M) is to use p(Dtl, M) = exp(-X'2/2), i.e., the
standard chi-square distribution. This approach ensures a faithfifl rendition

of the data, but typically results in images with spurious low signal-to-noise
features. In Maximum Entropy (ME) image reconstruction, the image prior
is based upon "phase space volume" or counting arguments and the prior is
expressed as p(llM ) = exp(c_,5'), where S is the entropy of the image and o is a

Lagrange multiplier that adjusts the relative importance of the G OF and image
prior.

PIXONS AND A NEW IMAGE PRIOR

By varying the model simultaneously with the image during the reconstruction

process, the sohttion to the reconstruction process is optimized over a signif-
icantly larger solution space. This solution space contains, for example, tim
solutions spaces of the standard GOb' and IvlE methods. Consequently, the re-

suits of our methods theoretically should be no worse than those of competing



PIXON-BASEDIMAGE RECONSTRUCTION 63

methods.While the advantageof varying tile model seem clear, it is less obvi-
ous how to do this in a productive manner. Certain aspects of tile model, for

example, should not be varied. The model includes, for instance, a description
of the physics of the imaging process, e.g., that the data is the convolution of
the point-spread-function (PSF) and the blur-free underlying image. The model
also includes the description of the noise processes, e.g., the noise might have
a Gaussian or Poisson distribution. These aspects of the model should not be
varied if ones wishes to remain faithful to the truth. However, the mathematical

model or representation of the image can be varied. Furthermore, varying the
mathematical model of the image can substantially improve the quality of the

image reconstruction. One relatively successful approach to image modeling was
suggested by Pifia and Puetter 1993 and Puetter and Pifia 1993. They pointed
out that in the most general of terms, an image is a collection of distinguishable
events which occur in distinct cells. Hence the value for the image prior can be

determined from simple counting arguments. If there are Ni events in cell i, and
a total of n cells, then the prior probability of that particular image is:

N!

p({2¢i}, _, N) = nN l-Ii Ni! -- p(I]M) , (3)

where {Ni} is the set of all numbers of events in cells i, and N is the total
number of events, i.e., N = Ei Ni. The cells used in equation (3) are quite

general. In fact, we have not specified a size, shape, or position for the cells.
The goal of selecting cells for a specific image is to maximize p(IIM) subject
to the constraint that an adequate GOF is maintained. Equation (3) clearly
indicates the desirable properties of the model, i.e., the model should contain
the fewest number of cells with each containing the largest number of events.

We have termed these generalized cells pixons. This terminology is not simply
whimsical. An image's pixons represent the smallest number of cells (of arbitrary
shape, position, etc.) required to fit the data and represent the minimum degrees
of freedom necessary to specify the image within the accuracy of the noise. If
properly selected, this set is not reducible to a smaller set. In this sense, the

pixons are the fundamental particles of information in the image. In fact, using
a pixon basis is the fultilhnent of Occam'_ t?._,zor tormalized in Bayesian terms.
Intuitively, this is the goal of every modeling effort, i.e., to fit the data with the
simplest model. Equation (2) is the embodiment of that goal with the p(D]l, M)
term insisting on a good tit and p(I[M) acting for the cause of simple models,
i.e., acting as an Occam'8 Razor term.

While the goal of pixon-based image reconstruction is now clear, there is
still considerable uncertainty associated with how to actually select the pixon
basis. Pifia and Puetter (1993)suggested a particular formulation: The Uniform

Pixon Basis (UPB). In the UPB, each of the pixons contain the same amount of
information, i.e., Ni is identical for each pixon. Because of this, the UPB image
representation provides a sort of "Super-ME" reconstruction. This is because
in the UPB representation each pixon is identical, i.e., in this basis the image is
exactly flat. Hence entropy is maximized exactly. All of the image's structural
information is inherent in the pixon basis. Because entropy is maximized exactly,
and because the number of cells in the UPB representation is typically much
smaller that the number of data pixels used ill standard ME reconstructions,



64 PUETTER AND PINA

the formal valueof the imageprior andhencethe valueof p(I, MID ) is vastly
improved. Crudely speaking, using tile UPB representation is the mathematical

equivalent of imaging the sky with a magical CCD which can interactively change
its number of pixels, their positions, sizes, and shapes in a manner in which each
pixel collects the same number of photons.

A FRACTAL PIXON BASIS

While tile UPB image representation is a major advance, tile UPB basis is rather

ad hoc. It can not be justified as an optimal pixon basis. A more satisfying
pixon basis can be chosen using fractal concepts as we shall now describe-also
see Puetter and Pifia 1993.

There are numerous definitions for the fractal dimension of a geometric
object. However all definitions have one thing in conlinon. Each calculates a

quantity that changes as a scale (or measurement precision) changes. For exam-

pie, the compass dimension (also referred to as the divider or ruler dimension)
of a line in a plane surface is detined in terms of how the measured length of the
line varies as the length of the ruler used to measure the length varies. These
ideas are closely related to pixons and the image reconstruction problem since
choice of a pixon basis is essentially asking the question: "How does the GOF
change as tile size of tile pixons are varied?"

In forming their UPB image model, Pifia and Puetter (1993) use a pseudo-
image calculated oil a pseudo-grid (usually equal to or liner than the data pixel
grid). At each point of the pseudo-grid a local scale is determined. This is the

local pixon size. The image is then set equal to tile pseudo-image convolved

with tile pixon kernel (or shape) function of the local width. This image is then
convolved with tile PSF and compared to the data to determine the GOF. Using
the above prescription, the pixons are not cells with sharp boundaries, but are
"fuzzy". However, since the image values on the pseudo-grid are correlated, the
number of degrees of freedom in the image are significantly less than the number
of pseudo-pixels.

We are now ready to consider how to improve the Ut'B rel)resentation using
fractal concel)ts. Occam'_ Razor tells us that we must use the fewest number of

pixons each containing the largest information content. The GOF term tells us
we must fit the data as well as possible. Using fuzzy pixons, we know that at each

point in the image we are going to smooth a pseudo-image over a local scale.
What aspect of tile smoothing process will prevent an adequate (;O1" value?

Clearly, if the underlying image is loc',dly smooth on a given scale, smoothing
the pseudo-image on scales less than or equal to this scale loses nothing. TiLe

GOF term is unaffected and the image prior improves. On the other hand,
smoothing on scales larger than the local scale is detrimental. So how does

one tell if the pseudo-image is being smoothed too much? If the true image
is smoothed with pixons of very small width, the value of the smoothed image
changes inappreciably. As the widths of tile pixons are increased, deviations of

the smoothed value from the unsmoothed value become appreciable when the

1)ixon size exceeds tile loom smoothness scale of the image. This provides an
over-smoothing signal. The only remaining issue is determining what size signal
is signiticant. We know, however, by what tolerance we can allow the smoothed
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imageto departfrom the unsmoothedimage.Tile departuremust not exceed
the local noise. Hencethe determinationof tile local pixon sizeis an inverse
fi'actMdimensionproblem.What weareseekingis the largestlocalsmoothing
scaleconsistentwith the tolerancesetby the noise.

RESULTS: 60 MICRON IRAS IMAGING OF M51

As atestof theabifityof FPB-basedimagereconstructionwehavereconstructed
animagefl'om60proIRASsurveyscansof theinteractinggalaxypair M51.This
datawasselectedfor severalreasons.First, M51is a well studiedobject at op-
tical, IR, andradiowavelengths.Hence"reality" for this galaxyis well known.
Second,this particulardataset waschosenasthe basisof all imagereconstruc-
tion contestat the 1990MaxEntWorkshopin Laramie,Wyoming(seeBontekoe
1991).Consequently,therehavebeena numberof seriousattemI)tsat perform-
ing imagereconstructionon this data set by specialistsin the tield. Finally,
the IRAS data for this objectis particularlystrenuousfor imagereconstruction
methods.This is becausefirst, all the interestingstructureis onsub-pixelscales
(IRASemployedrelativelylarge,discretedetectors(1.5i by4.75t at 60pro)and
the positionof MS1in the sky causedall scandirectionsto benearlyparallel.
This meansthat reconstructionsin thecross-scandirection(i.e.,the4.7,51direc-
tion alongthe detectorlength)shouldbesignificantlymoredifficult than in the
scandirection. In addition, tile point sourceresponseof the 151RAS60 ttm
detectors (pixel angular response) is known only to roughly 10% accuracy, and
Iinally, the data are not an image, but incompletely and irregularly sampled
scans of individual detectors across the galaxy.

Our FPB reconstruction appears in Figure 1 Mong with Lucy-Richardson
and Maximunl Correlation Method (MCM) reconstructions (Rice 1993) and a
MEMSYS 3 reconstruction (Bontekoe et td. 1991)-see Gull (1991) for a de-

scription of the MEMSYS algorithms. The winning entry to the MaxEnt 90
image reconstruction contest was produced by Nick Weir of Caltech and is not
presented here since quantitative intbrmation concerning this solution has not
been published-see Boutekoe (1991) for a gray-scale picture of this reconstruc-
tion. However, Weir's solution is qualitatively similar to Bontekoe's solution

(Weir 1993). Both were made with MEMSYS 3. Weir's solution, however, used
a single correlation length channel in the reconstruction. This constrained the
minimum correlation length of features in the reconstruction, preventing break-
up of the image on smaller size scales. This is probably what resulted in the
winning edge for Weir's reconstruction ill the MaxEnt 90 contest (Weir 1993).

As can be seen from Figure 1, our FPB-based reconstruction is clearly su-

perior to those produced by other methods. The Lucy-Richardson and MCM
reconstructions fail to significantly reduce image spread in the cross-scan direc-
tion, i.e., the rectangular signature of the 1.5 by 4.75 arcmiu detectors is still

clearly evident, and fail to reconstruct even gross features such as the "hole"
(black region) in the emission north of the nucleus-this hole is clearly evident ill
optical images of M51. The MEMSYS 3 reconstruction by Bontekoe is signifi-
cantly better. This image clearly recovers the emission "hole" and resolves the
NE and SW arms into discrete sources. Nonetheless, the level of detail present
in the FBP reconstruction is clearly absent, e.g., the weak source centered in
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FIGURE I Image reconstructions of the Interacting galaxy M51. (a) FPB-
based reconstruction; (b) MEMSYS 3 Reconstruction; (c) Lucy-Richardson Fig-
ure of panel (b) reproduced from Bontekoe (1991), by permission of the authors.
Figures of t)anels (c) and (d) reproduced from Rice 1993 by permission of the
author.

the emission hole (again, this feature corresponds to a known optical source),
and the fainter sources around the periphery of the image (most of which are
known radio or optical sources). One also notes that the resolution of the FPB
reconstruction is roughly a factor of two greater than the MEMSYS 3 recon-
struction. However, to be fair to the MEMSYS 3 reconstruction, the authors

rebinned their reconstruction by a factor of two to eliminate any possible spuri-
ous features. However, we are quite confident that all of the features present in
our reconstruction are real.

Aside from the fact that most of the sources can be identified with emis-
sion at other wavelengths, the residual errors in our reconstruction are much

smaller than in the MEMSYS 3 reconstruction. As pointed out by Bontekoe
et al. (1991) tile peak flux in the MEMSYS 3 reconstruction is 2650 units.

The residual errors are correlated with the signal and lie between 0 and 430

units. By contrast, the peak value in the FPB reconstruction is 3290 units,
the residuals are uncorrelated with the signal, and the residuals lie between -9
and 17 units. (The contour levels for the MEMSYS 3 and FPB reconstructions

are identical and are 150, 300, 600, 1200, arid 2400 units.) Furthermore, the
large deviation residuals in the FPB reconstruction are due to systematic errors
involving incomplete scan coverage of MSI. As mentioned above, these errors

do not lie under the significant flux emitting portions of tile M51 image. The
residual errors associated with emitting regions in M51 are significantly smaller
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andshowa roughlyGaussiandistribution. Consequently,the residualsin the
FPB reconstructionrepresenta two order-of-magnitudeimprovementoverthe
MEMSYS3 residuals.This, of course,immediatelyexplainstile absenceof the
finefeaturesin the MEMSYS3reconstruction.Theweaksourcespresentin the
FPB reconstructionall lie in the 150to 300unit range,and henceare30or
greaterdetectionsin tim FPB reconstruction.By contrast,thesesamefeatures
wouldbelessthan onedetectionin the MEMSYS3 reconstruction.

ACKNOWLEDGMENTS

Theauthorswouldlike to thankRomke Bontekoe and Do Kester for useful con-

versations on image reconstruction, IRAS data in general, and the 60 pm IRAS
data for M51 in particular. The authors would also like to thank Nick Weir for
numerous fruitful conversations both past and present. A patent application on

the pixon is currently pending by the authors and The Regents of the University
of California. This work was supported by NASA and the NSF.

REFERENCES

Bontekoe, Tj., R. 1991, in Maximum Entropy and Bayesian Methods, eds. W.T.
Grady, Jr. and L. H. Schick, (Dordrecht: Kluwer Academic Publishers),
319

Bontekoe, Tj., R., Kester, D. J. M., Price, S. D., de Jonge, A. R. W., and

Wesselieus, P. R. 1991, AgJA, 248, 328

Gull, S. t"., and Skilling, J. 1991, MemSys5 Quantified Maximum Entropy User_
Manual

Pifia, R. K., and Puetter, R. C. 1993, PASP, 105,630

Puetter, l/. C., and Pifia, R. K. 1993, Proe. SPIE, in press

Rice, W. 1993, A J, 105, 67

Weir, N. 1991, in Proceedings of the ESO/ST-ECF Data Analysis Workshop,

April 1991, P. Grosbo and it. It. Warmels, Eds. (Garching: ESO), 115

Weir, N. 1993, J. Opt. Soc. Am., in press

Weir, N. 1993, private communication




